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This paper identifies various factors which influence the relation-

ship between the Rasch item characteristic curve‘and the actual performance

of an item.

' The BRasch item characteristic curve is a new concept in test design 4
and analysis. The Rasch test model pravidee infomtion concetning the
percent of students with a specified achievement Ievel who would be ex-
pected to correctly answer a question with a specified difficulty. Using

this information, it is possible to make a cantinuous plot of the expected
percent correct across the full range of achievement. ‘This plot consti-

tutes the Rasch item characteristic curve.

- Insert‘Fig'hre 1 here -~

In evaluating an item, one of the important cuestim to be answered

is: How closely does the theoretical item curve fit the actual

performance of the item? To answer this question, the Resch item anal-

ysis pfogram plots the expected item curve and then adds the actual

performance of each ccore group to the.plot.

-~ Insert Figure 2 here -~



To help keep track of the 's:l.ze of the score group each point iy
represenced by a number or a letter. 'A "] jndicates 1 student had Ye
score; a "9" indicates 9 students had that score; A indicates 10, B
indicates 11, etc.; & indicates 35 or more. |

Ben Wright and his co-workers at Chicago have developed a
method to help deterﬁine the'degree of agreement between the item
characteristic curve and actual student performance on the :I.tém

Wright suggests we compare' the actual and expected percent corrECt

for each score group using the formula:

"9,

2 = Normal deviate

. 'Pa='Actual percent correct
2= Pa - Pe

Pe (1-Pe)

N N = Number of students in a given
" score group

Pe= Expected percent correct

These Z's can be squﬁ:ed and added ub to give a chi-square Statla

tic for the fit of the item to its expectéd curve. More often we dt"‘iﬂ

the chi-square by its degrees of freedom to obtain the inean'squdre’ ${
: : < 9

which has an expected value of 1.0.

We have found some practical problems in the use of t:h; mean
square fit. .F:lrs.t, when one has a large score gron;p .(larst N), 8 e\ '
be quite large, thus inflating the mean sqﬁare and making the item 1\0““
1ike a poor item, even though it fits the curve fairly well., Secony
when the expect.ed percent correct (Pe) is very large or very small, ;hcﬂ

Pe (1-Pe) is very small and Z becomes very hrée.




To moderate the use of the wean square fit, we have deveioped
two new statistics designed to compensate for & large N and a per-:
centage correct near one or zero. The refined.f:lt is analogous to
the near square fit except that we excl.ude score groups where the expected
percent correct is less than .10. The verage deviation is the averege o
.of differences between the expected and ectuel ‘percent :lgnor:l.ng e:lgn.

- Where the mean equere fit is advereely affected by l.erge N's, the -
average deviation prov:ldee- an mdex, :I.odependent of the N. In the
gituet:lon where the contribution of score groups with very h:lgh or
very low expected percent correct :I.néletes the mean .sqoere f.it,'the‘
refined fit- prov:l.des an index :I.udependent of the: extreme groups.

In add:lt:lon to these three indices of f:l.t, we uee the point

b:l.eerial as an :I.nd:l.cat:lon of power of an’ 1tem to d:l.ecr:lminl.te between

seore :
the upper and lower half of a distribution of tota.]. m on a test.

The Rasch procedure makes the- assumption thet all 1teme heve the same

' 1evel of discrimination. However, Ronald" Bambleton hu shown that the-

pasch scaling procedure is ingensitive to v:loht:lone of th:l.s

assumption. On the :I.nd:lv:ldual item level we often £:I.nd thet an :I.tem

with high discrimination may have an undee:l.rebly large peu' squere

fit- ’ : | e e e et

-~ Insert Figure 3 here -~ :
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In these cases“;erusually keep the item in'epite of its lack
of fit. In the case of low discrimination we usually discard the -
item even if the mean square fit is setisfaetorily close to 1.0.

We have also found that the point biserial can be misleading
for very easy or very difficult items. A point biserial of .30
for a 507 difficulty-level item is roughly equivalent to.n point bi-
serinl'of .24 for a 107 item. In the situation where very easy or - .
very hard items have low point biserials, we recommend trying vali-
dating the item on a more anpropriate group. . |

Because of our theoreticel interest in the mean square fit end‘
the,point biserial as indicators of item ‘quality we became interested
in finding out if their limitations were apparent in the analysis
of ectunl test datn. We therefore conducted a series of empiricni

investigations in which we attempted to relnte these indicators to

a variety of test and item characteristics.

Reletionshig to Sample Size'
To investigate the relationship of the four indices of item

quality to sempie size, we drew random anmples of 98, 1506, 217, 290
and 506 from a population of 1475 students responding to 30 items

drawn from a larger fourth grede mathematics test.

-- Insert figure 4 here =-




As shown in Figure 4, the mean square f£it and the refined Eit
appear to increase with 1arge sample sizes, while the point biserial
'remains relctively constant and the average deviation decreases.
As anticipated,'the results indicate that as sample size increases, .
the, mean square £it and refined fit also increaee.' This ie'probebly
due to the fact that the expected averege devintion between the actunl
and expected percent correct is not zero. Since we know that items_
differ with respect to discrimination, it is recsonnble to expect thet
there will always be a residual difference between the ectunl and ez--”
- pected regardless of how much we increase the semple size.. While this
_difference hag been shown by H:mbleton to. have only a minimnl effect :
on difficulty sccling, a large N will eignificantly increale the size of
the terms added to the mean square and refined fit, increnee their lize,»_' *
and reduce their effectiveness as. indicetore of the performance of the item.i'éz
| From & practicel point of view the:e results nre”not too dis-~ |
turbing. Beeed on. previous research, we heve clready determined that
a sample size of 150 to 200 students is neceseery and eufficient to
develop stable difficulty and achievement eetimatecT Fton the
preliminarj data in Figure 4 it appears that ell_fonr indices have

optimum or near optimun performance for eemple sizes in that range.

Relationship to Score Group Size

This issue is related to-the previous discussion of sample
gize. Usually we require that at least fi%e‘students hevetthe same -

test score before we use the

ot




difference between theaectual and expected number of students getting
the item correct in calculating the mean square fit,.refihed fit and .
average deviation. To determine whether this wne & reasonable pro-
cedure we undertook an empirical study of the effect cf-changing the
minigpum required score srcup size on these indices.

The full-sample test datas previously described were used in
this investigation. Data rere run fof'n sample of 150 students and

then for the full group of 1475 students.
== Insert Figure 5 here =---

‘As shown in Figure 1, the larger score group restrictiona did
not- appear. to. lpprecinbly change the 1nd1ces for the full sample,
and appeared to increase slightly the menn square £it and refined
£it for the 150 sample. Based on this 1n£ormntion, 1t appeers thnt ;
'nsing a wminimum score group restriction of three to ftve students is
optimum or close to optimum with respect td the mean square fit and
refined £it. . This result is probably due at lenst 1n part to a
technique we have developed for adjusting the difference between the
actual 'and expected percent of studentn in a group. getting an 1tem

correct- We firet determine how close 1t is poscible to appronch the

expected value given the size of the ecore group. This basic difference

is subtracted from the difference we observed to give a wore nccurate jffﬁ5




indication of the actual discrepancy. For example, with a score group
of five the closest we can come to an expected value of 53% would be
an observed value of 607 and that would be an unavoidable 7% away.

If we found that two students in the group answered the item correctly,
the discrepancy would be 53% (EXPECIED) less 40% CACTUAL) giving 13%.
Correcting this for the 7% one is unnvoidably off because of the .
group gize would gi§e us a corrected diacrepnncy of 6%. Based on
these datn it nppenrs that this approach mnkes it feasible to use

amnller score groups in the calculation of the mean squnre fit.

Relationship to Refined Fit Cutoff level
Another 1mpottant problem is the relationship between the cutoff

level chosen in caelculating the refined fit and the value obtained for
the refined fit. Reviewing the basic equation for the terms that are
1nc1uded in the mean square fit and refined fit, it should be noted

that the factor \}Pe (1-Pe) nppears in the denominator where Pe is the'

expected percent correct. When the expected percent correct is close
to one or zero, the size of the terms can be greatly inflated. This
situation is accentuated even further since the terms are squared be-~

fore being added to the mean square fit.

-- Insert Figure 6 --




" As shown in Figure 6, the effect of the expected percenf correct o,
is quite dramatic for values below .20. For this reason the refined
fit is aiéigned to remove the effect of these extreme values by elim-
inating all terms based on expected percents above or below # specified %
cutoff level. Using this information, an investigation wn§ made of

the effect of different levels of the cutoff on the values obtained
. ] ’ .

for the refined fit.

-

-~ Ingert Figure 7 here -~

- -

As shown in Figure 7, a cutoff level between .05 and .10 appears

-

‘to produce a minimum average level for the refiﬁed fit. While cutoffs
lower thaq ﬂQS appear to include the effect of sp@rio&s tz;ms, cut-"
" offs larger than .10 appear to exclude too many té;ms and therefore
reduce the stability of-the refined fit values. invpractiée we have
used a cutoff value of .10 which, on the basis of these data, appears

to be optimum or near optimum.

-Summary
Thé data reportea‘here were gathered to determinglthe best
.approach to'determining‘the fit between the item characteristic
curve and the actual performance of an item. It appeirs that .using .wa'
2 minimum score group size of three to five students, a réflned
fit ?utoff of .05'40 .10 are optimum. é;ture feséafch will ‘be

directed toward cross validating these findings.
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Figure &
The Average Values for Four Item Quality Indices
For Various Size Groups
SAMPLE SIZE

INDEX 98 150 217 290 506 1475 |

MEAN SQUARE FIT .81 .91 .91 .90 1.03 1.71

REFINED FIT .79 .73 .79 .90 .86 1.49 .

AVERAGE DEVIATION 11.96% 7.55% 7.26% |  7.18% 5.17% 5.19%

POINT BISERIAL .43 .40 .41 .41 42 42
% _‘A

-8-




Fiéure 5

Relation of Minimum Score Group Size

Required Minimum Score Group Size
3 5 7 10 15
’ MEAN SQUARE .86 .91 .96 1.05 -
. FIT . :
150
STUDENTS REFINED .70 .73 .75 .78
‘ FIT ' -
AVERAGE 8.29% 7.55% 8.00% 6.85%
DEVIATION _
MEAN SQUARE 1.89 1.71 1.97 1.80 1.89
FIT L
1475
STUDENTS - REFINED 1.49 1.49 153 )oooasa o foouse )
: FIT ;
AVERAGE 4.81% 5.19% 4.967% 4.65% 4.76%
DEVIATION
* A gcore group restriction of .15 yielded no information for
the 150 sample.

-11-
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Figure.é

The Relative Contribution to Fit of the Same Discrepancy

for Different Values of the Expected Percent Correct

’ EXPECTED PERCENT CORRECT
. .50 030 025 020 015 - .10 005 .01
. (.50) (.70) (.75) (.80) (.85) (.90) (.95) (.99)
RELATIVE : .
1.0 1.1 ] L d L] * L] L 4

NTRIBUTION | 9 1.33 1.56 1.96 2.77 5.26 25.25

TO . ( ' -

FIT :

13-




Figure 7

PO

. | Relationship Between Cutoff Level

And Values Obtained for the Refined Fit

’ . REFINED FIT CUTOFF
001 005 010 015 020 025 .30
29 ITEM ,
. 1.26 1.28 1.23
TEST | 1.25 2 !
N
39 ITEM o 4 1.54 1.59 1.76 1.69 1.63
TEST 1.72 1.5 .l
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